Milo™单细胞蛋白表达分析系统 简明用户手册

普诺森生物科技(上海)有限公司 Revision 3.1, May 2021

目录

1.	实验准备	2
	细胞裂解与电泳	
3.	抗体杂交(单抗体孵育槽)	8
4.	抗体杂交 (三抗体孵育槽)	10
5.	扫描芯片 (InnoScan 710 扫描仪)	12
6.	扫描芯片 (InnoScan 1100 扫描仪)	16
7.	保存芯片	19
8.	Scout 软件数据分析	20
9.	洗脱重杂交	25
10.	维护及注意事项	27
11	计贴信 自	20

1. 实验准备

1) 所需设备

- ◆ 抗体孵育槽和海绵, 货号 A200
- ♦ Milo 芯片专用平头金属镊子
- ◆ 涡旋振荡器
- ◆ 水平摇床
- ◆ 正置明场显微镜,带 10 倍放大

2) 所需试剂和耗材

◆ ProteinSimple scWest 试剂盒

请根据您的细胞类型选择相应孔径大小的scWest试剂盒

Cell Type	Diameter (μm)	scWest Chip
Dendritic Cell	7	Small
Lymphocyte	7	
Neutrophil	8	
Monocyte	9	
HT29	11	Standard
Jurkat	12	
PC12	12	
HEK293	13	
U87	13	
COLO-205	13	
CHO	14	
HUVEC	15	
A431	16	
K562	17	
Hela	18	
HepG2/C3A	18	
NIH/3T3	18	
SF-21	18	
U2OS	20	Large
Aveolar Macrophage	21	
COS-7	25	

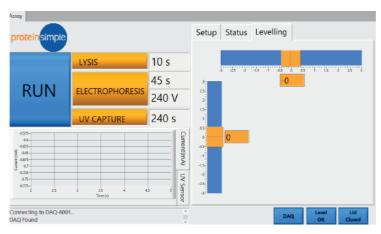
◆ 配制1 X Suspension Buffer 如取 3 mL 10 X Suspension Buffer 加入27 mL去离子水中。

- ◆ 配制1 X Wash Buffer 如取 40 mL 5 X Wash Buffer 加入 160 mL 去离子水中。
- ◆ 配制信号增强剂 (Signal Enhancement Reagent)

用去离子水溶解甘氨酸-盐酸(glycine-HCl, Sigma-Aldrich, G2879-500G)至终浓度0.25 M, pH应该在 2 左右,室温可稳定保存两周。每张 Milo 芯片需用 15mL。

◆ 非标记一抗

如果您还未购买一抗,可查阅抗体数据库:

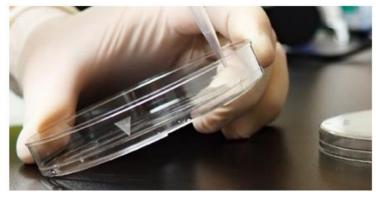

https://www.proteinsimple.com/antibody/milo antibodies.html 或咨询免费抗体验证服务: PSsupport.CN@bio-techne.com 如果两个一抗种属来源相同,建议分子量差异在 50-85 kDa 之间,并且依次进行杂交。

◆ 荧光标记二抗

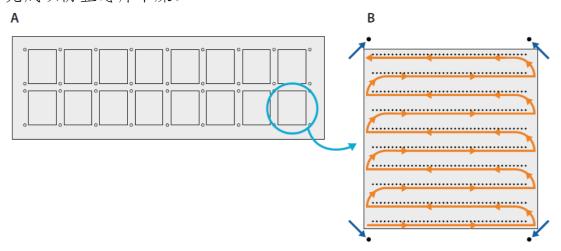
InnoScan 710 扫描仪适用的荧光染料包括: CY3, CY5, Alexa 647, Alexa 660, Alexa 546 和 Alexa 555

InnoScan 1100 扫描仪适用的荧光染料包括: Cy2, CY3, CY5, Alexa 647, Alexa 660, Alexa 546, Alexa 555, Alexa 488, FITC, Sytox orange, Draq5

- ◆ 10 cm培养皿 每张 scWest 芯片需要 2 个 10cm 培养皿
- ◆ 15 cm培养皿 每张 scWest 芯片需要 1 个 15cm 培养皿
- ◆ 铝箔 (二抗避光孵育)
- 3) 实验室的温度确保在10-30℃之间,湿度在10-90%之间。如果温度、湿度未达到要求,请打开空调、除湿机或其他相关设备,直到达到要求再开始实验。
- 4) Milo自检
 - ◆ 依次打开仪器背面的开关,再打开正面的开关。
 - ◆ 等Milo 开机后, 点击Leveling,检 查读值是否是 0 ± 0.2,否则调节 仪器四脚,确保 水平。


2. 细胞裂解与电泳

- 1) 戴上手套后, 用肥皂搓洗, 并用水冲洗干净, 去掉任何潜在粉尘。
- 2) 取出一个干净的 10 cm 培养皿,取出一张芯片,胶面朝上放入培养皿中(如下图所示)。

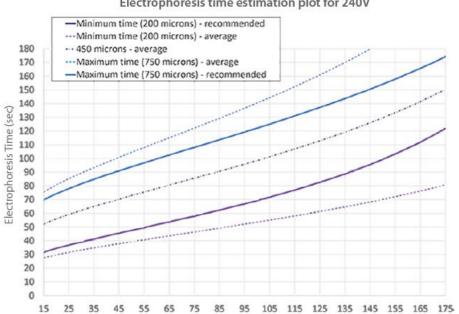


- 3) 取15 mL 1 X Suspension Buffer 加入培养皿中,注意芯片底部不要有 气泡。室温水化10 分钟以上,最长不超过 4 小时。
- 4) 制备单细胞悬液,离心沉淀细胞后,用 5 mL 1 X Suspension Buffer 清洗一遍,然后离心沉淀细胞后,用1 X Suspension Buffer 将细胞吹打均匀,调节细胞浓度为 10,000 100,000 个细胞/mL,每张 scWest 芯片需要 1 mL 单细胞悬液。
- 5) 芯片水化完成后,吸弃培养皿中的 1 X Suspension Buffer,注意芯片底部不要有气泡。
- 6) 将 1 mL 单细胞悬液从左到右滴加到芯片上,确保整张芯片都被均匀 覆盖。室温静置5-20分钟。具体的静置时间可以通过显微镜下观察孔 内细胞来确定。注意静置时尽量不要晃动芯片,如果发现孔内细胞太 少,可以在芯片上补加单细胞悬液。
- 7) 将培养皿倾斜 45°角,从芯片短边的底部吸去细胞悬液,再从芯片短边的顶部加入 1 mL Suspension Buffer,将未沉降入孔的细胞洗去(如下图所示)。

8) 如有需要,可重复步骤7 1-2 次以去除胶表面未沉降的细胞,最后吸弃 1 mL Suspension Buffer,显微镜下计数芯片上 1 个区块孔内含单细胞或多细胞的孔数(如下图所示)。注意计数过程需要在10分钟内完成以防止芯片干燥。

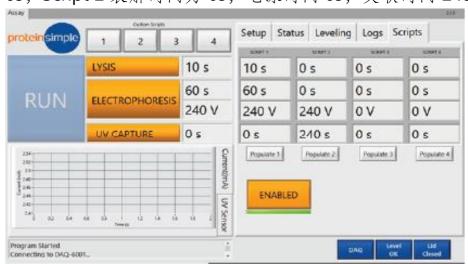
9) 设定 Milo 的运行参数:

实验表明使用信号增强剂可以有效的改善抗体在Milo上的表现,详见应用指南《Improving antibody performance on Milo with the signal enhancement reagent》,故推荐您分步设置程序:


Run 1 根据细胞大小和靶蛋白分子量大小设置裂解时间和电泳时间。 Lysis Time: 0 – 15 秒。小细胞用 0 秒,标准细胞用 10 秒,大细胞用 15 秒。预实验时建议多做几张芯片,摸索不同的裂解时间。

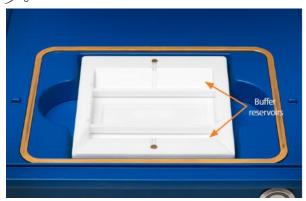
Electrophoresis Time: $45 - 90 \gg$.

Target MW	Electrophoresis Time
10–30 kDa	45 seconds
30–80 kDa	60 seconds
80–175 kDa	90 seconds


如需同时检测分子量不同的目标蛋白,可从下表中确定电泳时间,但 最长不可超过180s,避免产生过多的焦耳热。

Electrophoresis time estimation plot for 240V

Molecular Weight (kDa) Figure 1. Electrophoresis time estimation plot for electrophoresis run at 240 V.


Run 2 只进行紫外交联固定,推荐 240V 电压下交联 240s。 如下图所示, Script 1 裂解时间为 10s, 电泳时间 60s, 交联时间 Os, Script 2 裂解时间为 Os, 电泳时间 Os, 交联时间 240s。

- 10)确认电泳槽已清洗干净并彻底晾干。在电泳槽中部凹槽靠左位置加入 300 μL Lysis/Run Buffer, 注意避免加入气泡。
- 11) 从 10 cm培养皿中取出芯片。可轻轻推压培养皿底部让芯片短边微微 翘起,再用平头金属镊垫在芯片下方以帮助取出芯片。如有过量液体 下滴,可让芯片边缘稍沾下无尘纸。

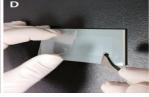
- 12) 将芯片<mark>胶面朝上</mark>,与底部的Lysis/Run Buffer接触后缓慢放入电泳槽中部凹槽内。注意芯片底部不能有气泡,胶面不能与 Lysis/Run Buffer接触。
- 13) 将剩余的 Lysis/Run Buffer 快速加入电泳槽上部或下部(如下图所示),注意不要直接倒在芯片上,确认芯片没有浮起且表面被 Lysis/Run Buffer 均匀覆盖,立即关上仪器盖子,点击 1,然后点击 RUN、运行第一步。

- 14)分离结束后,打开 Milo,取出带有芯片的电泳槽,小心将 Lysis/Run Buffer 倒入废液中。芯片因为表面张力将保留在电泳槽内。
- 15) 将电泳槽放回 Milo中,加入 15 mL信号增强剂并关上仪器盖子。点击 2,然后点击 RUN,运行第二步。
- 16) 紫外捕获结束后,取出芯片,胶面朝上放入新的 10 cm培养皿,加入 15 mL 1 X Wash Buffer,划圈摇晃清洗芯片,吸弃 1 X Wash Buffer。
- 17) 加入 15mL 1 X Wash Buffer, 水平摇床上摇晃 10 分钟, 吸弃 1 X Wash Buffer。
- 18) 重复步骤17 一次,总共 2 次 10 分钟清洗。 可暂停:如不想马上进行一抗孵育,芯片可在 1 X Wash Buffer内, 4℃保存 2-3 天。如果想存放更长的时间,则先用去离子水冲洗3次, 再离心3-5分钟,充分干燥芯片。下次孵育前用 1 X Wash Buffer 水化 10 分钟以上。

3. 抗体杂交(单抗体孵育槽)

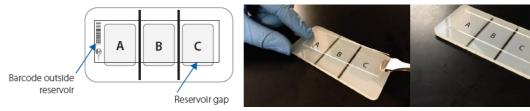
如果一抗种属为Goat或者Sheep,用Milk-Free Antibody Diluent (P/N 043-524)稀释。如果不是Goat或者Sheep,则用Antibody Diluent 2 (P/N 042-203)稀释。<mark>荧光二抗的稀释液应与一抗的保持一致</mark>。例如一抗为Goat anti-GAPDH primary antibody (Sigma, PN SAB2500450)时,二抗可用Donkey anti-goat Alexa Fluor 647 secondary antibody (Invitrogen, A21447),此时一抗二抗均要用 Milk-Free Antibody Diluent 来稀释。如果使用不当,可能会有非特异性结合,使得背景过高。抗体至少 1:1 稀释,例如某一抗母液浓度为0.1mg/ml,则加入等体积的对应的抗体稀释液,即最终使用浓度为50ug/ml。

- 1) 洗涤结束后,将芯片取出,倾斜吸干多余的液体,然后利用芯片离心机 Spin 3-5秒,使其处于半干状态,即没有全干也没有可见液滴。然后将其胶面朝下,缓缓放在抗体孵育槽上,并在下方留一个小的缝隙。
- 2) 根据抗体种属,用推荐的抗体稀释液稀释一抗,建议一抗起始浓度 100 μg/mL (1:10 稀释),稀释后的一抗体积 80 μL。
- 3) 沿缝隙缓慢加入稀释后的一抗(如下图所示),注意不能有气泡,如 边缘有小气泡,可稍稍移动芯片以排出气泡。



- 4) 在孵育槽两边放上充分润湿的海绵,盖上培养皿盖子,室温孵育1-2 小时。
- 5) 孵育结束后,用中指在芯片一角轻按芯片,对角放入平头金属镊以便 抬起芯片,并用拇指和食指扶住芯片(如下图所示)。

- 6) 取出芯片, 胶面朝上放入新的 10 cm 培养皿。
- 7) 加入 15 mL 1 X Wash Buffer, 水平摇床上摇晃 10 min, 弃 1 X Wash Buffer。重复清洗 2 次, 总共 3 次 10 分钟清洗。

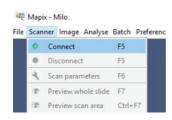

- 8) 将抗体孵育槽反过来,根据抗体种属,用推荐的抗体稀释液稀释荧光 二抗,建议二抗起始浓度 50 μg/mL (1:20 稀释),稀释后的二抗体 积 80 μL。
- 9) 取出芯片,按照一抗孵育方法操作。先用无尘纸吸干液滴,然后Spin 3-5秒,胶面朝下缓慢放下,留个缝隙,最后加入荧光二抗,注意不要有气泡。
- 10) 在孵育槽两边放上充分润湿的海绵,盖上培养皿盖子,室温孵育1小时。**注意需要避光!**
- 11) 取出芯片, 胶面朝上放入新的10cm培养皿, 加入 15 mL 1 X Wash Buffer, 水平摇床上摇晃 15 min, 弃 1 X Wash Buffer。重复清洗 2 次, 总共 3 次 15 分钟清洗。
- 12) 芯片可以在4℃, 1 X Wash Buffer 中保存 2-3天或者用去离子水润洗 3 次后用芯片离心机离心 5 分钟彻底干燥后进行扫描。

4. 抗体杂交 (三抗体孵育槽)

如果一抗种属为Goat或者Sheep,用Milk-Free Antibody Diluent (P/N 043-524)稀释。如果不是Goat或者Sheep,则用Antibody Diluent 2 (P/N 042-203)稀释。荧光二抗的稀释液应与一抗的保持一致。例如一抗为 Goat anti-GAPDH primary antibody (Sigma, PN SAB2500450)时,二抗可用 Donkey anti-goat Alexa Fluor 647 secondary antibody (Invitrogen, A21447),此时一抗二抗均要用 Milk-Free Antibody Diluent 来稀释。如果使用不当,可能会有非特异性结合,使得背景过高。抗体至少 1:1 稀释,例如某一抗母液浓度为0.1mg/ml,则加入等体积的对应的抗体稀释液,即最终使用浓度为50ug/ml。

- 1) 根据抗体种属,用推荐的抗体稀释液稀释一抗,建议一抗起始浓度 100 μg/mL (1:10 稀释),稀释后的一抗 40 μL。
- 2) 在 15 cm 培养皿中放入抗体孵育槽。
- 3) 取出芯片,短暂离心3秒钟,注意不要过干。
- 4) 将芯片<mark>胶面朝下</mark>,从条形码一侧开始放入孵育槽内,注意一边留出一点距离以便于加抗体(如下图所示)

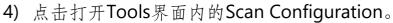
- 5) 沿缝隙缓慢加入稀释后的一抗35 μL, 注意不能有气泡。
- 6) 以同样的方式添加另两个一抗。建议相邻的两个孵育室内添加不同种属的一抗,以便于观察是否有一抗交叉污染。注意如果只有一个孵育室添加抗体,请勿移动芯片以保证胶面完整。
- 7) 在孵育槽两边放上充分润湿的海绵,盖上培养皿盖子,室温孵育 1-2 小时。
- 8) 孵育结束后,用中指在芯片一角轻按芯片,对角放入平头金属镊以便抬起芯片,并用拇指和食指扶住芯片(如下图所示)。


- 9) 取出芯片, 胶面朝上放入新的 10 cm培养皿。
- 10) 加入 15 mL 1X Wash Buffer, 水平摇床上摇晃 10 min, 弃 1 X Wash Buffer。重复清洗2次,总共 3 次 10 分钟清洗。
- 11) 将抗体孵育槽反过来,根据抗体种属,用推荐的抗体稀释液稀释荧光 二抗,建议二抗起始浓度 50 μg/mL (1:20 稀释)。
- 12) 重复步骤 3-9。
- 13) 加入 15 mL 1 X Wash Buffer, 水平摇床上摇晃 15 min, 弃 1 X Wash Buffer。重复清洗 2次,总共 3 次 15 分钟清洗。
- 14) 芯片可以在4℃, 1 X Wash Buffer 中保存 2-3天或者用去离子水润洗 3 次后用芯片离心机离心 5 分钟彻底干燥后进行扫描。

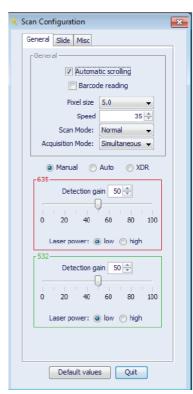
5. 扫描芯片 (InnoScan 710 扫描仪)

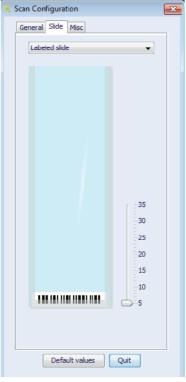
1) 打开扫描仪右后方的开关。

2) 点击 打开Mapix 软件,然后点击Scanner > Connect 连接扫描仪。软件连接后,扫描仪的激光光源即开始预热,一般预热10分钟以上,30分钟如果没有操作软件会自动断开,需重新预热。



3) 将芯片<mark>胶面朝上</mark>,有条形码的一头朝外,插入扫描仪内,然后用食指 推到底。



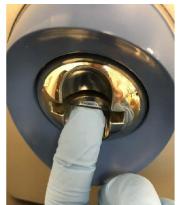


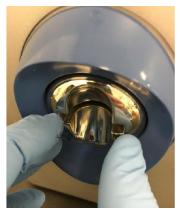
5) 设定扫描参数。推荐的扫描参数如下图所示。 Gain 和 Laser power可根据每张芯片进行调 节。

6) 设置扫描区域。使用扫描区域绘图工具选择芯片中心的区域进行预览。注意,您可以通过单击矩形边框(它将变成虚线),然后按住键盘上的Delete键来删除该区域。

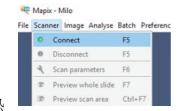
- 7) 点击工具栏的"Start a preview of the defined scan area"按钮,进行扫描预览。

- 9) 部分芯片预览结果如右图所示,您可以看到三个不同背景强度的区域,因为在预览期间如第8步所示,我们对激光强度进行了调整。设置好最优的激光强度后,通过点击该区域,并按住键盘上的Delete按钮删除自定义的预览扫描区域。
- 10) 通过点击"Play"按钮进行整张芯片的扫描。



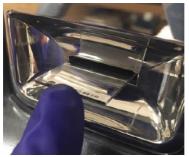

- 11) 自定义保存扫描结果。默认保存路径在<我的文档>文件夹内,格式为tif。您也可以更改保存路径,文件名,文件格式或者单独保存还是合并保存等等。
- 12)扫描开始后,将实时显示扫描结果并显示剩余时间。您可以在扫描过程中通过按下迷按钮或更改"显示选项"窗口中的设置来调整屏幕对比度和亮度。这不会改变数据,只是改变了它在屏幕上显示的方式。
- 13)扫描结束后,软件会自动保存到步骤11里您指定的位置。

14)扫描完成后取出芯片。注意手指先从芯片下方将芯片拔出,再从两侧捏住,将芯片取出。


15)长时间不扫描时,点击Scanner-Disconnect关掉激光光源,节省光源寿命。

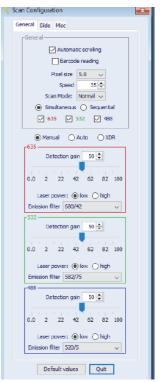
6. 扫描芯片 (InnoScan 1100 扫描仪)

1) 打开扫描仪右后方的开关。

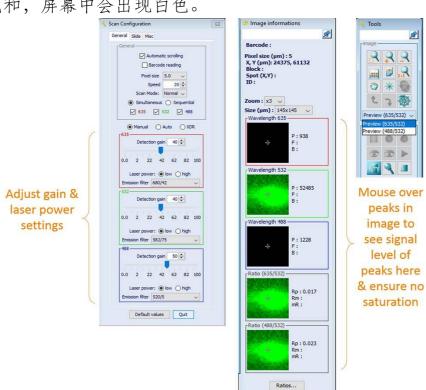

2) 点击 打开Mapix 软件,然后点击 Scanner > Connect 连接扫描仪。软件连接 后,扫描仪的激光光源即开始预热,一般预热

10分钟以上,30分钟如果没有操作软件会自动断开,需重新预热。

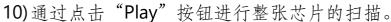
3) 将芯片<mark>胶面朝上</mark>,有条形码的一头朝外,插入扫描仪内,然后用食指 推到底。



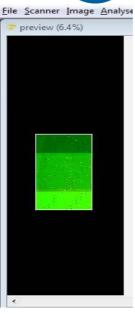
5) 设定扫描参数。推荐的扫描参数如下图所示。 Gain 和 Laser power可根据每张芯片进行调 节。



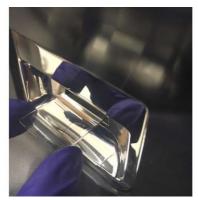
6) 设置扫描区域。使用扫描区域绘图工具选择芯片中心的区域进行预览。注意,您可以通过单击矩形边框(它将变成虚线),然后按住键盘上的Delete键来删除该区域。



- 7) 点击工具栏的"Start a preview of the defined scan area"按钮,进行扫描预览。
- 8) 在预览扫描时可根据需要调整激光强度,对比度和亮度等。如果看不到蛋白条带,您可以调整对比度和亮度(※)。可能高激光强度相比低激光强度会有更好的信噪比。但低激光强度可以减少光漂白,从而可以避免信号饱和。通过增加或减少每个通道的激光强度,以最大限度地扩大动态范围,但不要使任何峰值饱和(信号饱和值=65535)。如果信号饱和,屏幕中会出现白色。

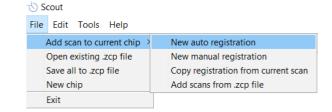


9) 部分芯片预览结果如下图所示,您可以看到三个不同背景强度的区域,因为在预览期间如第8步所示,我们对激光强度进行了调整。设置好最优的激光强度后,通过点击该区域,并按住键盘上的Delete按钮删除自定义的预览扫描区域。

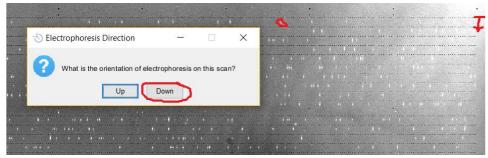


- 11) 自定义保存扫描结果。默认保存路径在<我的文档>文件夹内,格式为tif。您也可以更改保存路径,文件名,文件格式或者单独保存还是合并保存等等。
- 12)扫描开始后,将实时显示扫描结果并显示剩余时间。您可以在扫描过程中通过按下迷按钮或更改"显示选项"窗口中的设置来调整屏幕对比度和亮度。这不会改变数据,只是改变了它在屏幕上显示的方式。
- 13)扫描结束后,软件会自动保存到步骤11里您指定的位置。
- 14)扫描完成后取出芯片。注意手指先从芯片下方将芯片拔出,再从两侧捏住,将芯片取出。

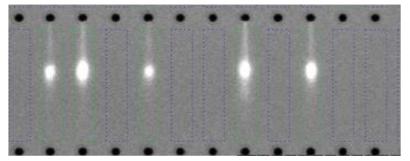
15)长时间不扫描时,点击Scanner-Disconnect关掉激光光源,节省光源寿命。

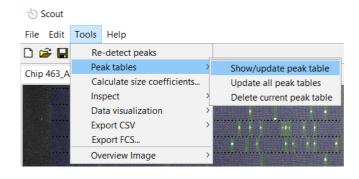

7. 保存芯片

- 电泳结束后,如不想马上进行一抗孵育,可将芯片于 10 cm培养皿中,加入 15 mL 1 X Wash Buffer,水平摇床上摇晃 10 分钟,吸弃 1 X Wash Buffer,共 2次。再加入 15 mL 1 X Wash Buffer,4℃冰箱保存 2-3 天。
- 2) 如果想存放更长的时间,则可用去离子水润洗 10 分钟后用芯片离心 机离心 5 分钟,放入所提供的芯片盒中,在室温下存放。如下次再杂交,需把芯片取出,在 15 mL 1 X Wash Buffer 中对芯片再水化 10 分钟以上。

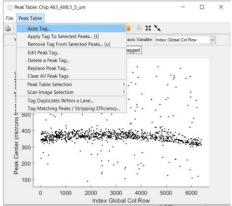


8. Scout 软件数据分析


1) 双击 图标, 打开Scout软件。 点击 File 打开保存的 tiff文件 (如右图所示)。

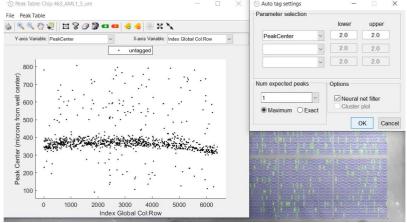

2) 判定蛋白迁移方向。可通过查看最上面一排样品的迁移方向判断,如果信号在最上面一排孔的上面,选择 Up;如果在最上面一排孔的下面,选择 Down。

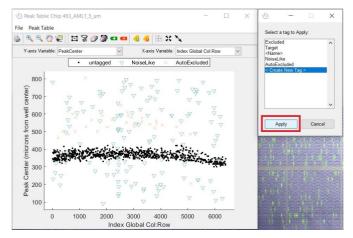
3) 软件将自动将有信号的泳道加绿框,无信号的泳道加蓝框。

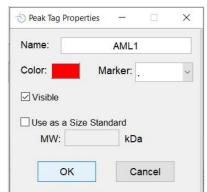


4) 点击 Tools-Peak tables-Show/update peak table。

5) 出现信号散点图后,点击 Peak Table-Auto Tag…

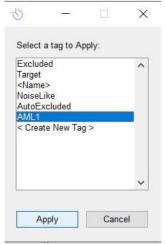



6) 散点图聚类表示同一个靶点信号。如果

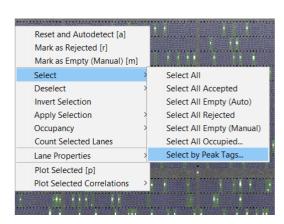

该图中只有1个靶点,则在右图 Num expected peaks 选择 1,表示泳道中有 1 个 靶点。左图聚类散点图 的上下两侧表示分子量 太大或太的小的非靶点信号。

7) 点击 < Create New Tag>,然后点击Apply或者直接双击 < Create New Tag> 给靶点命名。

8) 例如Name设置为AML1, 点击OK。



9) 在弹出的对话框中选择之前命名的靶点,并点击Apply。

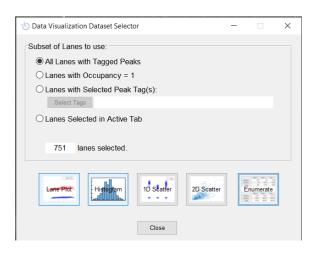


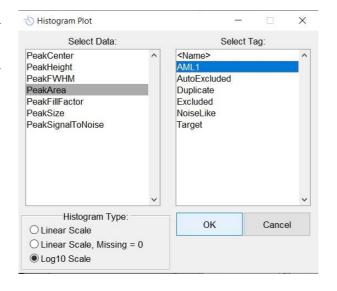
10) 此时散点图如图所示。

Peak Table: Chip 463_AML1_5_um

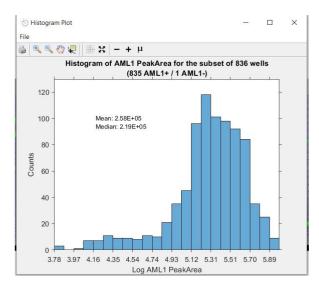
File Peak Table

11) 在扫描芯片图上右键, Select-Select by Peak Tags…,选择之前命名的靶点名称。

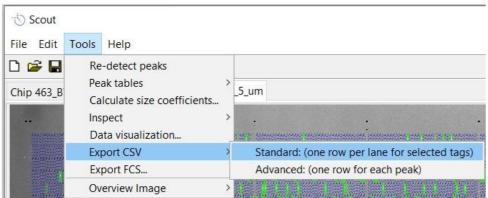



12) 在扫描芯片图上右键, Occupancy-Set Occupancy[o]… 并将值设为 1。

13) 点击 Tools-Data visualization,通过五种不同的方式展示结果。 如直方图,散点图,统计表格 等。



14)例如用直方图展示表达分布,在 弹出的对话框中选择 Peak Area 代表考察的参数为表达丰度,右 侧选择命名的靶点。



15)示例数据: AML1平均表达量为 2.58X10⁵。

16) 可点击 Export CSV-Standard: (one row per lane for selected

tags),导出原始数据,进一步通过第三方统计软件进行数据处理、作图展示等等。

17) 更详细软件使用说明可参阅《Scout_Software_User_Guide》。

9. 洗脱重杂交

- 1) 建议在杂交扫描后尽快洗脱芯片,但您也可在洗脱前,将芯片存放在 Wash buffer 中最多 3 天。在洗脱之前应避免干燥储存,因为这会降 低洗脱效率。一旦洗脱,可立即重杂交或干燥芯片以便长期储存;重 杂交之前,一定要给干燥的芯片进行水化。有文献证实可进行多达 9 次的洗脱和再杂交。
- 2) 所需设备及试剂耗材
 - ◆ 水浴锅、通风橱、涡旋振荡器、水平摇床
 - ◆ 试管架, 10cm培养皿, 镊子, 封口膜, 耐热胶带, 50mL离心管, 芯片容器
 - ◆ ProteinSimple scWest试剂盒, 5X Wash Buffer, 一抗, 荧光二 抗, 胰酶, SDS, Tris-HCI, β-ME
- 3) 配制洗脱液。注意:可预先制备 Tris-HCl 和 SDS 洗脱储液,但β-ME 应现用现加。

洗脱液配方:

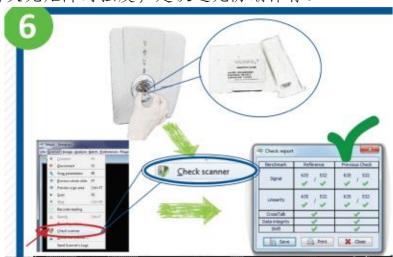
62.5 mM Tris-HCl (pH 6.8) 2% (w/v) SDS (20 g in 1 L) 0.8% (v/v) β-ME (14.3 M)

- 4) 芯片扫描后应避光保存。如果不立即洗脱,可先置于Wash Buffer,最多可存放三天。首先将水浴设为 60°C。内部放置一个管架,并将水位调到没过管架大约1厘米的位置。管架上方压上重物或用其他方式将其固定。注意:接下来的操作均要在通风橱内进行。如果通风橱足够大,水浴锅也可放进去。
- 5) 将芯片插入芯片容器,倒入 40 mL 预混好的洗脱液,拧紧盖子,然后用封口膜缠绕紧密。将芯片容器放入 60° C 水浴锅管架,孵育90 分钟,可根据实际情况优化剥离。 注意: 对于每张要洗脱的芯片,都要配备一个独立的芯片容器 (PN 035-118)。每张芯片需要 40 mL 洗脱液与320 μL β-ME。
- 6) 孵育结束后,在通风橱内取出芯片,胶面朝上放入一干净的培养皿。 先用 1 X Wash Buffer 快速漂洗一次,然后加入15 - 20 mL 1X Wash Buffer,摇床振荡洗涤15 分钟,共 4 次。洗涤完成后,即可杂交新的 抗体。

7) 当需要剥离重杂交时,可参考下表,在抗体剥离效果类似的情况下, 优先检测表达丰度低的靶蛋白。在表达丰度类似的情况下,优先检测 抗体剥离效果高的靶蛋白。

PROTEIN ABUNDANCE	ANTIBODY STRIPPING EFFICIENCY	DETECTION: CYCLE 1	an a	DETECTION: CYCLE 2
Similar	Similar	Either protein		Remaining protein
Similar	Unequal	High stripping efficiency antibody	STRIP	Low stripping efficiency antibody
Unequal	Similar	Low abundance protein		High abundance protein
Unequal	Unequal	Low abundance protein		High abundance protein

TABLE 4. Multiplexing approaches for stripping and reprobing on Milo.


- 8) 每次剥离信号均有不同程度的损失,如果需检测多个靶点,建议采用不同种属,不同分子量,不同荧光通道的方式实现,不建议剥离重杂交超过9次。
- 9) 更详细软件使用说明可参阅《Multiplexing to the Max: A Guide to Stripping and Reprobing Your Single-Cell Westerns》。

10.维护及注意事项

维护事项:

- 1) 实验室的温度确保在 10-30 ℃之间,湿度在 10-90 % 之间。如果温度、湿度未达到要求,请打开空调、除湿机或其他相关设备,直到达到要求再开始实验。
- 2) Milo 开机和关机顺序: 开机时先打开背面的开关键, 再打开正面的开关键。开机后, 需检查 Leveling, 确保Leveling在0 ± 0.2, 尽量接近0。关机时, 先关闭正面的开关键, 再关闭仪器背面的开关键。
- 3) Milo 不运行时会自动进入待机模式, 所以可在一天内的全部 Milo 实验结果后再关机。
- 4) Milo 电泳结束后,需及时丢弃电泳槽内的 Lysis/Run Buffer,并用去 离子水充分冲洗后晾干保存。如果需要马上使用,可用无尘纸擦干残 留电泳槽内的去离子水后使用。
- 5) Innoscan 扫描仪安装、搬动时需运行 Validation chip 进行性能检测。如果使用频繁,需要一个月进行一次性能检测。如果不经常使用,可在当次使用前进行性能检测。将标准芯片正面向上插入扫描仪,点击 Scanner-Check scanner,然后仪器运行结束后会弹出一个Check Report,所有指标均显示对号,表示自检通过。
- **6)** 每台扫描仪均有专用的Validation chip, 且有对应的保质期。为了延长其内的荧光矩阵的强度,建议避光防潮保存。

7) Innoscan 扫描仪不用时,注意点击 Scanner-Disconnect 关掉激光光源,节省光源寿命。

操作注意:

- 1) 实验前一定要先配戴手套,再用肥皂水清洗,然后用自来水清洗,最后用去离子水冲洗以保证洁净。
- 2) 运行 Milo 前需要设置好参数,当加入全部 Lysis/Run Buffer 后需要立 马关上 Milo的盖子,点击Run,运行 Milo。
- 3) 水化,电泳,漂洗,扫描时均芯片胶面朝上,孵育抗体时芯片胶面朝下。必须用专用镊子托起芯片,切勿触碰胶面,使其污染或破损。
- 4) 抗体孵育时一定要避免气泡产生,且两边放置含水的海绵,保持湿润,荧光二抗的孵育一定要避光。可先用抗体孵育槽的一面孵育一抗,再用另一面孵育二抗。

11.订购信息

项目	数量或内容	订货号
scWest Chips - Small	8	C250
scWest Chips - Standard	8	C300
scWest Chips - Large	8	C350
scWest Chips -Calibration	8	C400
10X Suspension Buffer	50 mL	R101
5X Wash Buffer	250 mL	R252
Lysis/Run Buffer (single use)	8X 15 mL	R200
Antibody Diluent 2	20 mL	042-203
scWest chip canisters	4	035-118
Small scWest Kits	• 10X Suspension	K500
Standard scWest Kits	Buffer	K600
Large scWest Kits	• 5X Wash Buffer	K700
scWest Calibration Kits	Antibody Diluent 2Lysis/Run Buffer	K800
Probing chamber and sponges	1	A200
Three-Plex Antibody Probing Fixture	1	035-117
Tweezers 91SA, wafer	1	035-023